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Abstract

In the kinematical region where the center of mass energy is much larger than all other
scales, the Drell-Yan process can be formulated in the target rest frame in terms of
the same color dipole cross section as low Bjorken-x deep inelastic scattering. Since
the mechanisms for heavy dilepton production appear very different in the dipole ap-
proach and in the conventional parton model, one may wonder whether these two
formulations really represent the same physics. We perform a comparison of numerical
calculations in the color dipole approach with calculations in the next-to-leading order
parton model. For proton-proton scattering, the results are very similar at low s
from fixed target to RHIC energies, confirming the close connection between these two
very different approaches. We also compare the transverse momentum distributions
of Drell-Yan dileptons predicted in both formulations. The range of applicability of
the dipole formulation and the impact of future Drell-Yan data from RHIC for deter-
mining the color dipole cross section are discussed. A detailed derivation of the dipole
formulation of the Drell-Yan process is also included.

PACS: 13.85.Qk; 13.85.Lg; 13.60.Hb
Keywords: Drell-Yan process; dipole cross section; perturbative QCD

lemail: jorgr@lanl.gov



1 Introduction

With the advent of RHIC, the Drell-Yan(DY) process [1] can be studied in a new kinematical
regime, the so-called Regge regime, where the dilepton mass M is small compared to the cm
energy +/s, but still much larger than Agcp. The DY process at RHIC and LHC energies is
therefore of similar interest as DIS at HERA, where one can study v*-proton scattering in the
Regge regime. The new experimental possibilities motivate further theoretical investigations
of the DY process. First of all, one needs a framework to calculate nuclear shadowing in the
DY process, the onset of which can already be observed at fixed-target energy [2]. This is
especially important in view of the RHIC heavy ion program. The color dipole formulation
of the DY process introduced in [3, 4] is suitable to address this issue and a considerable
amount of work in this direction has been performed [5]-[9]. In addition, the low-z5, DY cross
sections are sensitive to integrals over the color dipole cross section which are not accessible
in DIS [4]. Therefore, future DY data can be used to further constrain this quantity.

In this paper we compare next-to-leading order (NLO) parton model calculations for DY
dilepton production in proton-proton (pp) and proton-deuteron (pd) collisions with calcu-
lations in the dipole approach over a wide energy range. Although the two approaches are
believed to be equivalent in a certain kinematical range, the underlying mechanisms appear
to be quite different, and there is no known way to prove this equivalence analytically. How-
ever, both approaches are supposed to describe the same process, so they should yield similar
numerical results?.

Before we compare the results of the numerical calculations, the key features of the two
approaches are briefly summarized. The well known mechanism for continuum dilepton
production, which was first found more than thirty years ago by Drell and Yan [1], was
formulated in a frame where both colliding hadrons are fast moving (infinite momentum
frame). According to Feynman’s picture of high energy collisions, the colliding objects can
be viewed as collections of noninteracting partons with negligibly small transverse momenta.
To lowest order, DY dileptons are produced by quark-antiquark annihilation, and the cross
section reads,
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The distribution function of a quark (antiquark) of flavor f of the target or the projectile
is denoted by ¢q; (gr), Ny is the number of active flavors and Z; is the quark charge. The
longitudinal momentum fractions of the projectile (target) parton, 21 (x2), can be expressed
in terms of Lorentz invariant scalar products as
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?Differences between parton model and dipole approach are seen in the angular distribution of DY pairs,

if saturation effects are included in the dipole cross section [10]. When we talk about equivalence of parton

model and dipole approach, we mean equivalence up to higher twist effects, which are neglected in the parton

model, but (at least partially) included in the phenomenological parameterization of the dipole cross section
we employ.




where P{" (P)) is the projectile (target) four momentum, ¢* is the four momentum of the
dilepton, ¢> = M? > 0, and z is the Feynman-z, xr = 2, — 2.

For most qualitative descriptions, it is sufficient to consider the DY process in terms of
the lowest order annihilation process, Eq. (1). Calculations with Eq. (1), however, under-
estimate measured DY cross sections by an overall factor. It is necessary to employ the
NLO framework for the DY process, in order to make quantitative predictions, see [11] for a
review. In addition, the DY cross section differential in the dileptons transverse momentum
receives huge corrections from higher order processes. Indeed, to lowest order, one would
not expect dileptons with large transverse momentum ¢, , in contrast to what is observed
in experiment. Even though the occurrence of perturbatively large transverse momenta can
be explained in NLO, it is not straightforward to calculate the shape of the ¢, -distribution
in the parton model. A resummation of large logarithms in ¢, /M [12] or alternatively the
introduction of an intrinsic transverse momentum [13] is necessary to avoid the divergence
of the differential cross section at ¢, = 0.

In the parton model, all nonperturbative effects are parameterized in the parton distri-
bution functions ¢, ¢y, which evolve according to the DGLAP evolution equations. For
DY in nuclear collisions, the parton distribution functions of the proton are simply replaced
by empirical nuclear parton distribution functions [14]. This approach does not explain the
dynamical origin of the nuclear effects

Figure 1: In the target rest frame, DY dilepton production looks like
bremsstrahlung. A quark or an antiquark from the projectile hadron scat-
ters off the target color field (denoted by the shaded circles) and radiates
a massive photon, which subsequently decays into the lepton pair. The
photon decay is not shown. The photon can be radiated before or after
the quark (antiquark) scatters.

Nuclear effects, effects from higher orders in perturbation theory, as well as other possible
nonperturbative effects, are more readily treated when the Drell-Yan process is viewed in
the target rest frame. Note that although cross sections are Lorentz invariant, the partonic
interpretation of high energy scattering processes does depend on the reference frame. In the
rest frame of the target, the production mechanism for high mass continuum dileptons looks
like bremsstrahlung [3, 4], see Fig. 1. In the high energy limit, when one can neglect terms
that are suppressed by a factor 1/energy, each of the two graphs factorizes into a production
vertex for the virtual photon times an amplitude for scattering a quark off the target. These
scattering amplitudes combine in the squared matrix element in exactly the same way as
in DIS, which makes it possible to express the DY cross section in terms of the same cross



section 0 for scattering a ¢g-dipole off a nucleon (N) as in low-zg; DIS,

do(gN — v*X) 5 N
T = [ o el ojapa) . (3)

Here, « is the light-cone momentum fraction the virtual photon takes away from its parent
quark, and p is the transverse separation between v* and final quark. The electromagnetic
radiation, ¢ — 7*¢, is described by the light-cone wavefunction W.-,(c, p), see Egs. (A.18)
— (A.20), which can be calculated perturbatively Summation over photon polarizations is
understood in Eq. (3). The dipole cross section o, is of nonperturbative origin and has to be
taken from phenomenology. The energy scale x of the dipole cross section will be discussed
in the next section. A detailed derivation of Eq. (3) is given in the appendix.

Using a phenomenological parameterization for the dipole cross section in Eq. (3) is a
very economical way to account for higher order and nonperturbative effects. The dipole
approach can even be applied at low values of M where perturbative QCD is not valid [15]. It
was found in a recent analysis [10] that most of E772 DY data (except some points at low M)
are reasonably well described in the dipole approach without introducing an arbitrary overall
normalization factor. In addition it was found that the transverse momentum distribution
does not diverge at ¢, = 0, even without intrinsic transverse momentum.

We emphasize that the dipole approach does not describe an additional production mech-
anism for heavy dileptons. Rather, the two approaches are believed to describe the same
physics in different reference frames. Therefore, calculations in the NLO parton model and
in the dipole approach should give similar results for the DY cross section. This is what we
numerically check in this paper. In the following section, we compare numerical calculations
of the DY cross section (integrated over the transverse momentum of the dilepton) in both
approaches. In section 3, we also compare the predictions of dipole approach and parton
model for the DY transverse momentum distribution at RHIC.

2 Numerical comparison of the two approaches

In order to perform calculations that can be compared with experimental data, one has
to embed the partonic cross section, Eq. (3), into the hadronic environment. In the infinite
momentum frame, the momentum fraction of the projectile quark is z1, see Eq. (2). However,
when the scalar product defining x; is evaluated in the target rest frame, one finds z; = az,
where z = 1/« is the momentum fraction of the incoming proton carried by the projectile
quark. The different meanings of x; in the target rest frame and in the infinite momentum
frame is a manifestation of the frame dependence of partonic mechanisms. In the target rest
frame, x; is the momentum fraction that the lepton pair takes from the projectile proton.
Thus, one obtains for the proton-nucleon DY cross section

2 T~ o) Q
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We still need to know the scale @ at which the projectile parton distributions are probed
and the energy = at which the dipole cross section enters. These quantities are not known
exactly, instead we have to rely on plausible arguments to determine their values. In order
to find @, note that the transverse distances p that contribute to the DY cross section are
controlled by the extension parameter

n* = (1—a)M?+o*mj. (5)

The numerically dominant term in the LC wavefunctions, Eqs. (A.18, A.19), is the one
that contains the Bessel function K;(np). Since this function decays exponentially at large
arguments, the largest distances that can numerically contribute are of order ~ 1/n. For
fluctuations with e — 1, these distances can become of the order of a typical hadronic radius,
in analogy to the aligned jet configurations in DIS [16]. On the other hand, the minimal value
of v is xy, so that the largest virtuality entering the calculation is Q2 = 2, = (1 — z1)M2.
We choose this quantity to be the hard scale at which the projectile parton distribution
is probed. The parton distribution functions (PDFs) are taken from CERNLIB [17]. The
quark mass is set to m; = 0 in all our calculations, see [10] for its numerical influence.

For the quark density of the projectile, we employ the leading order parameterization
that corresponds to the NLO parameterization used in the parton model calculation. This
means e.g. we use CTEQSL in the dipole approach when comparing it with a NLO parton
model calculation using CTEQ5M.

The energy scale x of the dipole cross section in Eq. (4) is determined from the analogy
to DIS. In DIS, the argument of the dipole cross section is zp; = Q*/W?, where @ is
the virtuality of the photon and W is the y*-proton cm energy. Therefore, we choose
x = M?/§ = axy, where § = sz /a is the quark-proton cm energy squared.

Note that in the previous analysis [10], M? and z,, instead of @2 and x, were used. The
different choice of scales in this paper has the effect of increasing the cross section by a factor
of up to 2 for dilepton mass M ~ 4 GeV. This is mostly due to the different choice of (2.
Using ax, instead of x5 is only a ~ 10% effect at x5 < 0.1. These uncertainties vanish at
larger masses, M ~ 8 GeV.

For the calculations in the dipole approach shown in Figs. 2 — 4, we employ the parame-
terization of the color dipole cross section by Golec-Biernat and Wiisthoff [18],

oip.) = 0 [1 —exp (~LLE) ©)

with oy = 23.03 mb. This parameterization rises quadratically at small separations p as
demanded by color transparency [19] and saturates at large separations. The saturation
scale that controls the flattening of the dipole cross section is given by

0.0003> 0288

T

Q*(7) = 1GeV? < (7)

We point out that no DY data have been used to determine the parameters in Eq. (6). Only
DIS data from HERA were fitted to extract the dipole cross section.
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Figure 2: Calculations in the dipole approach to DY and its modifica-
tion Eq. (9) compared to NLO parton model results at fized target energy
(/s = 38.8 GeV). The CTEQ5M parameterization [20] is used for the
parton model calculation. The data are from E772 [21]. The curves and
data for the different mass bins have been rescaled for better visibility. In

all calculations, none of the free parameters of the dipole approach were
adjusted to DY data. Only DIS data have been used.



Note that the parameterization Eq. (6) contains only the Pomeron part of the dipole
cross section. As a consequence, the dipole approach predicts identical cross sections for
particle and antiparticle induced DY. This is, of course, reproduced in the parton model
at low zo. In addition to this Pomeron part, there is also a contribution from Reggeon
exchange, corresponding to valence quarks in the target [9]. In principle, one could fit
a parameterization of this Reggeon part to the data, but the predictive power of such a
procedure would be very low, since the Reggeon part, in contrast to the Pomeron part,
depends on the colliding hadrons. We therefore do not attempt to determine the Reggeon
contribution to the dipole cross section in this paper.

Fig. 2 shows calculations at fixed target energy in the dipole approach and in the NLO
parton model, as well as experimental DY data from E772 [21]. The lowest value of xy
that can be reached is about 0.02. Dipole and parton model calculations are very similar at
low x5, where the dipole approach is supposed to be valid, but strongly deviate as x5 — 1.
Clearly, we cannot apply the dipole approach at large x5, since it does not include valence
quark contributions to the DY cross section (see [10] for a more detailed discussion of effects
that are taken into account by the dipole approach). Note also that the parameterization
Eq. (6) was fitted only to DIS data below zp; < 0.01, hence the curves shown in Fig. 2 are
already an extrapolation of the fit.

In Fig. 2 there are several E772 data points at low x, that exceed the calculations in
both the parton model and dipole approaches. This excess was also visible for some points
in [10]. Indeed, experiment E772 was not designed to measure the absolute normalization of
the DY cross section, but to measure nuclear effects. New data from E866/NuSea will not
suffer from such problems. A comparison between preliminary E866/NuSea data and the
NLO parton model in [23] shows good agreement.

The disagreement between the two approaches sets in around x5 ~ 0.1 in Fig. 2. Some-
what surprisingly, the dipole approach yields values that exceed the prediction from the
parton model (at large z5), even though the dipole approach does not include several con-
tributions to the DY cross section. This can be understood, if one observes that the dipole
cross section is related to the target gluon density G. At small separations p one has [24]

2 A A
oon(p,x) = Pl (ﬁ) p*xG (x, ?> : (8)

Egs. (6) and (7) contain only the part of the gluon density that increases at low z. At large
x, however, the gluon density decreases like G(z) oc (1 — z)® [25]. At high virtuality, the
power is even higher than 5, say ~ 8. In order to estimate the uncertainty originating from
this effect, we follow [26] and replace the saturation scale Eq. (7) by

Qi () = Qi(z)(1 — =)”. (9)

We refer to this recipe as modified dipole approach and the numerical results are shown by
the short dashed curves in Figs. 2 — 4. The replacement Eq. (9) has virtually no influence
at © < 0.01, where the parameters in Eq. (6) have been fitted in [18], but at x = 0.1, it
reduces the cross section by almost a factor of 2. In fact, in [27] calculations in the dipole
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approach were performed employing a dipole cross section calculated from a gluon density
that contains saturation effects. For /s = 38.8 GeV, the results of [27] lie below the ones
obtained in [10] with the saturation model of Golec-Biernat and Wiisthoff [18] by a factor of
~ 2. We believe this disagreement is largely due to the decreasing gluon density at x5 > 0.01,
i.e. due to uncertainties in the dipole cross section.

Apparently, the low-x, range accessible at fixed target energies is very limited, and there-
fore the dipole formulation is bestowed with several uncertainties. Unfortunately, there are
no DY data at really low z5. Even CDF data [28] are at about the same values of 5 as
the E772 data, because they are mostly in the Z-boson mass range. At RHIC, however,
much lower values of x5 will be reached, where the dipole approach can readily be applied.
In Fig. 3, we show predictions from the dipole approach and the NLO parton model (using
CTEQ5M PDFs) for RHIC energy. Calculations with the modified dipole cross section,
Eq. (9), are also shown. The disagreement between dipole approach and parton model sets
in around 5 ~ 0.01, i.e. around zp ~ 0. At low x5 all three curves are in good agreement,
confirming the similarity between the two approaches.

In order to show the uncertainty arising from the choice of PDFs, we did the same
calculation, employing GRVIS8HO [22], see Fig. 4. In this case, the differences between the
two approaches are slightly larger than for CTEQ5M. With GRV98HO, the NLO parton
model calculation exceeds the dipole approach by at most a factor of 1.5 for x5 < 0.01; for
CTEQS5M, the corresponding value is only about 1.2. The third standard PDF we employed
was MRST(c-g) [29]. The results are comparable to GRV9S8HO and are not shown here,
because they do not provide any further insight. For most values of x5 and M, which do
not lie at the very edge of the phase space, the NLO calculations are only ~ 10% — 20%
higher than the dipole approach. In summary, we find that the uncertainty from the choice
of PDFs is ~ 25% at the low values of 25 shown in Figs. 3 and 4.

We also point out that for these low values of x5, the DY K-factor is typically 1.4 to 1.5
and can become even smaller than unity for very low z5. In the parton model, the K-factor
is defined as the DY cross section calculated in NLO divided by the same quantity calculated
in LO. The K-factor originates (mostly) from the analytic continuation from the spacelike
(DIS) to the timelike (DY) region of ¢® in the annihilation and virtual corrections at NLO.
The QCD Compton process, which dominates at low xo because of the large target gluon
density, does (almost) not contribute to the K-factor. Therefore, in the kinematical region
of interest, the K-factor is considerably below its usually assumed value of 2 to 3.

At this point, we stress that the term “K-factor” is defined only in the parton model.
In the dipole approach, there is no freedom to adjust the overall normalization of the DY
cross section as proposed in [27], because higher order corrections are contained in the
parameterization of the dipole cross section.

Most uncertainties in the dipole approach arise from uncertainties in this parameteriza-
tion. It remains to be seen whether future low x5, DY data from RHIC can be accurately
described with a (probably improved) phenomenological parameterization of the dipole cross
section. We believe that future DY data can serve as an important source of knowledge about
the color dipole cross section.
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Figure 3: The same as Fig. 2, but now at RHIC energy (/s = 500 GeV),
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10°

M3d?a/dxe dM (nb GeV?)

Figure 4:
approach,

- dipole
Eoprp - X P
i GRVIBHO ------
\/S = 500 GeV modlflai dl pole ........

M=4.25 GeV (x10°)

= M=4.75 GeV (x10°) v
E s SV .. L
E M=5.25GeV (x10)! { 7 I A
- P IS \\‘\‘
E M=5.75GeV (x10°) S R
- R TN "
[ 4 . X sl e "
3 ‘ ,/’ RN “\“:‘l
E M=6.25GeV (x10°) y SRR
E 'l’ '.. \‘ “:‘:“l
[ M=6.75GeV (x10%) / R R
E_ /"’ ) te “‘ “‘\‘“:\l
o J Nt . N [}
I — RN . \\\‘. i
L M=7.25GeV (x10°) S
E 4 . \\‘\ N ‘\“}l
i ) Y
M=7.75 GeV (x10) R
o o
. Wi
M=8.25 GeV (x10) BT
L 1
]
3 i
: M=8.75 GeV
vl Lol Lol Lol Lol MR |
1e-05 0.0001 0.001 0.01 0.1 1
X2

The same as Fig. 3, but with GRV PDFs [22]. For the dipole
we employed the LO PDFs GRVISLO for the projectile parton

distribution.

10



3 The DY transverse momentum distribution

The DY cross section differential in the dilepton transverse momentum ¢, can provide even
more detailed information about the shape of the dipole cross section than the ¢, -integrated
cross section. In the dipole approach, the ¢, -differential cross section reads [5],

d®o(gp — 7*X) 1 s o e
= d?p.d IQL'(PI—P2)\I]** AL o
dlnad?q, (2m)2 / pra-pa e Srqlas P1)Wyeg (e, 52)
1 — —
* 3 {oag(apr, ©) + agq(aps, ) — ogq((pi — ), )}, (10)

where ¢, is the v* transverse momentum wrt the direction of the projectile quark. This
formula was first published in [5]. We give a detailed derivation in the appendix. The
partonic cross section, Eq. (10), has to be embedded into the hadronic environment in the
same way as in Eq. (4). Again, the sum over photon polarizations is understood to be
contained in the light-cone wavefunctions, see Eq. (A.20).

We would like to compare the transverse momentum distribution calculated in the dipole
approach with the same quantity computed in the parton model. It was already mentioned
in the introduction, that there are no large transverse momenta in the leading order parton
model. The order a; correction yields a transverse momentum distribution that diverges at
¢, — 0 and has the wrong shape, when compared to data [13]. This can be remedied by
resumming contributions from soft gluon radiation [12], which yields a good description of
the data.

In this paper, however, we follow [13] and apply a more phenomenological recipe. We in-
troduce a soft, nonperturbative, primordial transverse momentum distribution of the partons
in the colliding protons, which we parameterize by a Gaussian,

—k2
2 1 ¥

f(k1) e,

(11)

- 2
47raq

The mean transverse primordial momentum squared of a single constituent in the proton is
then

<ki>prim0rdial — 202 . (12)

The perturbatively calculated ¢, -distribution is then smeared out by this primordial mo-
mentum and the regularized dilepton cross section is given by

i) = [l () @50 - F@)
dlPdredq. ), Pe\avedepdp, ), o0 NPT =
d2O.DY

1) (@) &

The subscript A 4+ C' refers to “annihilation+Compton” correction. The virtual corrections
do not contribute to the first term in Eq. (13). With this recipe, the perturbative result is
reproduced for large transverse momenta while the divergence at ¢, = 0 is removed. The first

11
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Figure 5: Comparison of the DY transverse momentum distribution cal-
culated in the dipole approach and in the NLO parton model. The parton
model calculations have been performed for two different values of the
quark’s intrinsic momentum. The values of the kinematical variables for
all curves in this figure are \/s = 500 GeV, xyp =0 and M = 4.25 GeV.

term on the rhs of Eq. (13) vanished after integration over ¢, and [ d?q, f(¢q.) is normalized
to unity, so that the total DY cross section is correctly reproduced.

The results of our calculations in the dipole approach and in the parton model are shown
in Fig. 5. We performed the parton model calculation for two different values of the smearing
parameter o,. The lower value, o, = 0.48 GeV, was used in [30] to describe ISR data at
Vs = 44 GeV and 62 GeV. The parameter o, is presumably independent of energy s.
Nevertheless, we also calculated for twice the ISR value of o, because at the low values of x
reached at RHIC, quarks may have a larger intrinsic transverse momentum. Of course, the
choice of o, has the largest influence at small ¢, while at very large transverse momentum,
the results become independent of this parameter. Note however, that o, still has a rather
large impact on the numerical results at intermediate ¢, ~ 2 — 3 GeV.

No intrinsic transverse momentum is included in the dipole approach, even though one
could introduce one. As already pointed out in [10], the cross section calculated in the dipole
approach does not diverge at ¢; — 0 because of the flattening of the dipole cross section, see
Eq. (6). At g, = 10 GeV, dipole approach and parton model differ by about a factor of 5.
Employing the modified dipole approach, Eq. (9), brings the curve down by a factor of 0.9
at ¢, = 10 GeV and has no effect at small ¢,. Therefore, we do not show the corresponding
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curves. Note that at high transverse momentum, the numerical value of the DY cross section
is completely insensitive to the large p behavior of the dipole cross section. Indeed, it was
found in [10] that an expansion of Eq. (6) to order p? virtually yields the same numerical
results at large ¢, when employed in Eq. (10). On the other hand, the behavior at ¢; — 0
is largely determined by the large p behavior of the dipole cross section. Therefore, future
data on the DY ¢, -distribution can be important for further constraining the dipole cross
section, provided statistics will be high enough.

4 Summary

In this paper, we presented a detailed comparison between calculations of the Drell-Yan cross
section in the color dipole approach with calculations in the conventional NLO parton model.
We also compared both approaches with experimental data when available. The dipole
approach and the parton model are believed to represent the same physics, but viewed from
different reference frames. The purpose of this paper was to demonstrate the close connection
between the two approaches numerically.

First, we compared calculations for the DY cross section integrated over the dilepton’s
transverse momentum ¢; and found that at low x5, where the dipole approach is supposed
to be valid, calculations agree well. Since both approaches rely on different nonperturbative
inputs, numerical results will not agree exactly. In the parton model, the choice of PDFs leads
to a ~ 25% uncertainty in the low x5 region we are interested in. In the dipole approach, one
uncertainty arises from the choice of the scale () at which the projectile parton distribution
is probed. In this paper, we relied on plausible arguments to determine this scale. At low
M ~ 4 GeV, a different choice of @) can lead to quite strong numerical effects (up to a factor
of 2), even though the dependence on @ is only logarithmic. For larger M, the choice of @
is much less important. The main uncertainty, which is difficult to quantify, arises from the
parameterization of the dipole cross section. Future DY data from RHIC will certainly help
to constrain the dipole cross section better.

We found that the disagreement between the two approaches is typically of order 20%
for 25 < 0.01. We believe that the parameterization of the dipole cross section can be
adjusted so that future RHIC data can be described without introducing an arbitrary overall
normalization factor for which we cannot find a theoretical justification. For larger values of
Z9, the applicability of the dipole approach is questionable, because this approach neglects
several contribution to the DY cross section which might already be important for 0.01 <
r9 < 0.1.

Note that several data points from E772 [21] at low z5 are not well described by nei-
ther of the approaches. The calculations will probably agree better with future data from
E866/NuSea [23], which were measured in the same kinematical region.

Naturally, the differences between the two approaches are larger when one considers
the DY transverse momentum distribution. At low ¢, , the numerical result in the parton
model depends quite strongly on the amount of primordial transverse momentum which is
included. This uncertainty is however no longer present at very large transverse momenta,
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g, ~ 10GeV, where the two calculations differ by a factor of 5 (at /s = 500GeV) . It
will be seen, if RHIC data can distinguish between the two approaches or if the dipole cross
section and/or the parton distribution function can both be adjusted to fit the data. We
point out that both approaches predict the same asymptotic behavior for the partonic DY
cross section, namely do/d*q, o 1/¢% for large transverse momentum [5].

Acknowledgments: We are indebted to Fred Cooper, Mikkel Johnson and Boris Kope-
liovich for valuable discussion. This work was supported by the U.S. Department of Energy
at Los Alamos National Laboratory under Contract No. W-7405-ENG-38.

Appendix A Derivation of the dipole formula for DY

In this appendix, we give a detailed derivation of the formula that expresses the DY cross
section in terms of the color dipole cross section, Eq. (3). This formula was first discovered
in [3]. Some details of the derivation in the semiclassical approach of [31] are given in the
appendix of [4]. In this paper, we use the framework of covariant Feynman perturbation
theory. The calculation can be carried out in a very similar way for DIS.

The differential cross section for dilepton production in the target rest frame, see Fig. 1,
is given by

dad?q d*py .
(2m)58(p7) (1 — @)

dM?dQ
16m2 M4’

dPo(gN — ¢l X) = ZZEZ(A)@,()\')MW

X AN

X Qemer(N)€,(N) L (A.1)
where p; is the momentum of the projectile quark, py is the momentum of the final quark
and ¢ is the momentum of the massive photon, ¢> = M? > 0. The first line describes the
bremsstrahlung of a massive photon from a quark (as depicted in Fig. 1), and the second
line the decay into the lepton pair [T~ into solid angle d©2 (not shown in Fig. 1). The
electromagnetic coupling constant is denoted by ae,, = €*/(47) = 1/137. Furthermore, €,(\)
is the polarization vector of the photon, A € {#+1,0}. We sum over all final states X and
the photon polarizations A, \'. The J-function for energy conservation is already integrated
over. Furthermore, « is the energy fraction the photon takes from its parent quark. It is
assumed that only transverse momentum but no energy is exchanged with the target. Then,
M"™ is the absolute square of the bremsstrahlungs-amplitude, before contraction with the
polarization vector of the photon. There are two contributions to this amplitude,

—uw 1 1
M = 5 > ~ D (ME+ ME) ML+ M), (A.2)
0f0; ¢ CfeC;

The s-channel amplitude M# describes the process where the photon is radiated after the
quark has scattered off the target, Fig. 1 (left), and the u-channel amplitude M# describes
the process where the photon is radiated before the quark scatters off the proton, Fig. 1
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(right). The bar indicates that the matrix element is summed over helicity oy and color ¢;
of the final quark and averaged over helicity o; and color ¢; of the initial quark. (N, = 3 is
the number of colors.) Finally, pj+ are the dilepton momenta and

L' = A(plip]- + plaps — 9" pirmi-) (A.3)

is the leptonic tensor, summed over helicities.

Different terms in the sum over photon helicities lead to different angular distributions of
the lepton pair. In this paper, we integrate over the solid angle dQ) = d¢d(cos ), and obtain
for the differential DY cross section

d'o(gN = 11" X)  em [Por(gN — v X) N d*or(gN — v*X)
dlnad M?d?q | ~ 3nM? dlna d?q, dlna d?q, ’

where the indices 7" and L stand for transverse and longitudinal photons, respectively. We
also integrated over the phase space of the final quark. The factor a,,/(37M?) originates
from the second line of Eq. (A.1) and describes the decay of the * into the lepton pair. The
interesting physics resides in the quantities d*or 1 /d Ina d?q,, which are given by

dPor(gN — v*X) )MW
= [ & A4
dlnad?q, / Pri XX: Agﬂ;} 27) 58 N(1—-a) 7 (A-4)
dPor(gN — v*X) =0)e, (A = O)MW
= [ d& . A5
dInad?q; / Pri Z (27m)%8(p?)%(1 — ) (A-5)

Terms with A # X in Eq. (A.1) vanish after integration over the azimuthal angle ¢.

We will now express the d*orf,/dInad?q, in terms of the ¢ — v*¢ light-cone(LC) wave-
functions and the dipole cross section. Consider the s-channel graph in Fig. 1 (left) where
the photon is radiated after the projectile quark has scattered off the target. The propagator
of the quark in the intermediate state can be written as

+

Prtd+my :Zua(pf+q)ﬂa(pf+q) 9 . (A.6)
(py +q)? — m3 (py +q)? —m3 2(p; +q*)
The u,(p) are Dirac-spinors, (p—my)u,(p) = 0, for on-shell momentum p and helicity o. The
~T-term arises, because the intermediate quark is off-shell. In the high energy approximation
which we employ, this term is dropped®. This is the crucial step that allows one to write the
amplitude as a product of an LC wavefunction and a quark scattering amplitude.
The s-channel amplitude then turns out to be

e Z a(rf (pf)’)/”ug(pf + Q)
2

(pr+q?—m ¥

3As already pointed out in [4], this approximation is equivalent to neglecting the instantaneous vertices

in a Hamiltonian light-cone approach to QCD [32], and violates gauge invariance. The color dipole approach
is gauge invariant only in leading log(x) approximation.

Mg = tooo (P} +0°), L), (A7)

g
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For simplicity, we have set the flavor charge to unity. Here, t,q0,((p} + qo),la) is the
amplitude for scattering a quark off a nucleon in the rest frame of the nucleon,

to00 (B} +0°) k1) = o (pf + ) 7° V(R L) g, (p5) = 298050,V (K1) (A-8)

Note that t and V' are matrices in color space, we suppressed the color indices. Our spinors
are normalized to uf (p)u, (p) = 2p°3, . The function th(l;:l) will be completely absorbed
into the dipole cross section, so that we will never need to specify it. Therefore, the dipole
formulation also accounts for some higher order and nonperturbative effects, which are dif-
ficult or even impossible to account for in the standard parton model. We write V, only as
function of the exchanged transverse momentum ko= Pri + 1 — PiL, because the longi-
tudinal momentum of the projectile quark cannot be changed significantly at high energies.
Note that V, also depends on energy, even though we do not write this dependence explicitly.
The Kronecker-d, ,, means that the helicity of the quark is not changed by scattering off the
proton.
In impact parameter space, the amplitude reads

— A2l d?k, e IR
M b.7) = / (;w)ﬁlLe_lll'ap_lk*b/\/‘?(ha’ﬁ) (A.9)
1— ~ —
= VAT (0, )20V, (6), (A.10)

where [| = pri—(1—a)q| /o is the transverse momentum of the final quark in a frame where
the z-axis is parallel to the photon momentum. The conjugate variable to ll, namely ap),
is then the transverse distance between initial and final quark in that frame. This quantity
will become the distance variable the dipole cross section. Furthermore,

N

0= [ e i), (A1)

The LC wavefunctions in impact parameter space are related to the quark-photon vertex
and the propagator by Fourier transformation,

2L Uo, (Pr) V" ue, (Pf + Q)
_ 3 L il -« s \f i\Uf
Vgl p) = a”V1 = O‘/We PN e 22 7P : (A.12)

where 7” = (1 —a)M? + o*m7. In our numerical calculations in this paper, we set the quark
mass my = 0. See [7] for its influence.

The u-channel graph can be written in the same way as (A.9), but with a quark scattering
amplitude at a shifted impact parameter. This can be seen from the propagators. While the
propagator for the s-channel graph yields

1 ol -

(pr+q)2—m3 o213 + 7%

(A.13)
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one finds for the u-channel graph the combination [ 1+ k | instead of [,

1 «
——T T T 7 T > (A.14)
(pi — @)* — m; ol +ki)?+n

One then obtains for the u-channel amplitude in impact parameter space

B T o
Mi(b,p) = 1mwﬁ*q(a,p)2p‘}%(b+aﬁ) (A.15)

]__
— iarY—"v
(6%

N, 9)2p) V(b + ap). (A.16)

and with Egs. (A.4) and (A.5) for the photon production cross sections

d3 N *X 1
orL(gN = 7" X) /dZPfL 4/d2b1/d262/d2p1/d2,02 (A.17)

dIno d?q |
eill-a([f — o) +ik | -(b1—b2) Z Z\I, \I]/\*( /72)

ofo;

- z{ Vb + o) } {W@) ~ V(B2 +ap)

X

where [, = pri— (1 —a)d /o and kL= Pri+ ¢ — pio. In the transverse case (7)), the
sum over A includes both transverse polarizations, A = 41, while in the longitudinal case
(L) only one term, A = 0 appears in the sum.

The LC wavefunctions for radiation of transverse and longitudinal photons are readily
calculated by contracting Eq. (A.12) with the photon polarization vector [3, 4, 5],

\Ilzj*q(ohﬁl)qlzjq(a?ﬁ?) = Z Z Oé pl)GM(A)\ijnyq(a7ﬁZ)
A= :I:l oFo;
= 5% dmia'Ko (npy) Ko (mp2)
= o ¥ 0 \11P1) Ko (1102
+ [+0-ap] oK) | (A1)
P12
- * - 1 * = g A= -
Ul (o, )Y (o) = 3 Z e (A= 0)U0 (o, A1) eu(A = 0) U270 (v, i)
oo
Qem 5 19 2
= ?M (1 =) Ko (np1) Ko (np2) - (A.19)

Often, one needs only the sum over all polarization states of the photon. We denote the
corresponding quantity by

\va*q(a, ﬁl)\p;*q(&, ﬁg) = \If,j;*q(a, ﬁl)\lf?;jq(a, ﬁg) + \Ifg*q(a, ﬁl)\pgfq(&, ﬁg) (A20)
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Integrating (A.17) over the transverse momentum ¢, of the photon yields

dO'TyL(qN — ")/*X) 9
T d p‘\I/ « ﬁ)‘ o (ap), (A.21)

with the dipole cross section

aq(ap) Z Z/d2 ‘V b+aﬁ)‘ (A.22)

crei

If one assumes that the quark interacts via one-gluon exchange with the target and expands
Eq. (A.22) to first order in (ap)?, keeping only terms of order «,, then the dipole cross
section is proportional to the target gluon density

We can also express the transverse momentum distribution of DY pairs in terms of the
dipole cross section [5]. The differential cross section is given by the Fourier integral

dPor (N — v*X) _
dInad?q, (27)?

x5 {omlom) +olylap) —oN(elF - )} (A23)

/d2p1d P2 e‘ql (PL=r> )\I/:T(}L(O[, ﬁl)\lf?;ii(&, ﬁg)

To derive this expression, one performs the integration over py, in Eq. (A.17) and observes
that Eq. (A.17) has a real value. This allows one to symmetrize the integrand with respect
to pi and py. The functions V, combine then to the dipole cross sections in the second line
of Eq. (A.23). After integrating Eq. (A.23) over the transverse momentum ¢, of the photon,
one obviously recovers Eq. (A.21).
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